Giovanni's Diary > Subjects > Programming > Gists >
Python / scikit-sample.py
Example of using a ML model with scikit-learn.
# scikit-sample.py # ================ # # Example of using a ML model with scikit-learn. # # Requirements: # # - matplotlib # - scikit-learn # - pandas from sklearn.datasets import fetch_california_housing from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV import matplotlib.pylab as plt import pandas as pd # Sample dataset X, y = fetch_california_housing(return_X_y=True) # We create a pipeline where we scale the data and specify a model pipe = Pipeline([ ("scale", StandardScaler()), ("model", KNeighborsRegressor(n_neighbors=1)) ]) # Get all the pipeline settings # print(pipe.get_params()) # We can try different hyperparameters on the pipeline via the GridSearch mod = GridSearchCV(estimator=pipe, param_grid={'model__n_neighbors': [1, 2, 3, 4, 5, 6]}, cv=3) mod.fit(X, y) df = pd.DataFrame(mod.cv_results_) plt.plot([i for i in range(6)], df['mean_test_score']) plt.xlabel('n_neighbors') plt.ylabel('mean_tests_score') plt.show()